首页 > 数学与应用数学> 常微分方程
题目内容 (请给出正确答案)
[主观题]

设曲面M上的一条曲率线C:x(s)(s为弧长),它的每一点处的从法向量V3(s)与曲面在该点处的法向量n(s)

设曲面M上的一条曲率线C:x(s)(s为弧长),它的每一点处的从法向量V3(s)与曲面在该点处的法向量n(s)成定角,且V3(s).n(s)≠±1(即V3s(s)不平行于n(s)).证明:C为平面曲线.

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设曲面M上的一条曲率线C:x(s)(s为弧长),它的每一点处…”相关的问题
第1题
设P0为两曲线x(s)与设k(s0)≠0.证明:曲线C:x(s)(s为其弧长)与已给球面(球心为m)在s0有2阶接触其中

设k(s0)≠0.证明:曲线C:x(s)(s为其弧长)与已给球面(球心为m)在s0有2阶接触

其中t可以任意选定.上式右边当固定s0时得到一条直线,称为曲线x(s)在s0处的曲率轴或极轴,而点

称为曲率中心,以曲率中心为圆心、

为半径的圆落在密切平面上,称为曲线x(s)在s0处的密切圆(见习题1.4.3图).(2)设k(s0)≠0,τ(s0)

点击查看答案
第2题
设曲面M的第3基本形式为Ⅲ=edu2+2fdudv+gdv2. 证明: (1)设曲面M:x(u,v)上无抛物点,并设M的一个

设曲面M:x(u,v)上无抛物点,并设M的一个平行曲面为M:x(u,v)=x(u,v)+λn(u,v),n(u,v)为x(u,v)处的单位法向l量,其中λ为充分小的常数,使1一λH+λ2KG≠0.证明:可选M的法向量n,使M的Gauss(总)曲率KG与平均曲率H分别为

点击查看答案
第3题
R3中k≠0,τ≠0的C4连通曲线x(s)为球面曲线等价于设曲线C:x(s)(s为弧长)为常挠曲率曲线.证明曲线:为

设曲线C:x(s)(s为弧长)为常挠曲率曲线.证明曲线

为x(s)的Bertrand侣线,其中a,b为常数,k,τ,V2分别为x(s)的曲率、挠率和主法向量,x(s)为其本身的从法向量,即x(s)=V3(s).

点击查看答案
第4题
设曲面M:x(u,v)=(ucosv,usinv,lnu)与设常Gauss曲率曲面M:x(u,v)的第1基本形式为 .曲面 证明:与M

设常Gauss曲率曲面M:x(u,v)的第1基本形式为

.曲面

证明:

与M有相同的Gauss曲率,但对应点的切平面互相正交.

点击查看答案
第5题
设M为R3中的C4正则曲面,x(u1,u2)为其参数表示,P0∈M,且满足:(1)KG(P)>0,即P0点的Gauss(总)曲率

设M为R3中的C4正则曲面,x(u1,u2)为其参数表示,P0∈M,且满足:(1)KG(P)>0,即P0点的Gauss(总)曲率为正的;(2)在P0点,函数k1达到极大值,同时函数k2达到极小值,则P0为M的脐点.这和以下条件等价:设M为R3中的C4正则曲面,x(u1,u2)为其参数表示,P0∈M,且满足:(1’)P0为非脐点;(2’)在P0点,函数k1达极大值,同时函数k2达极小值.则KG(P0)≤0.

点击查看答案
第6题
设曲面M:x(u,v)=(ucosv,usinv,lnu)与证明:曲面在点(u,v)处Gauss(总)曲率相等.但M与在此对应下未

证明:曲面

在点(u,v)处Gauss(总)曲率相等.但M与

在此对应下未必为等距映射.问(a,b)与

满足什么关系时,M与

在此对应下等距?

点击查看答案
第7题
设曲面M的第3基本形式为Ⅲ=edu2+2fdudv+gdv2. 证明: (1)曲面M的一个双曲点P处,在曲率不为零的渐

曲面M的一个双曲点P处,在曲率不为零的渐近曲线上,有

点击查看答案
第8题
设曲面M:x(u,v)=(ucosv,usinv,lnu)与(ucosv,usinv,v)在对应(u,v)→(u,v)下,Gauss(总)曲率相等,但

设曲面M:x(u,v)=(ucosv,usinv,lnu)与

(ucosv,usinv,v)在对应(u,v)→(u,v)下,Gauss(总)曲率相等,但此对应不是等距映射.

点击查看答案
第9题
设e1,e2,ω1,ω2和设R3中C2曲面M在等温参数{u,v}下,第1基本形式:I=ds2=E(du2+dv2)=λ2(du2+dv2),E=G

设R3中C2曲面M在等温参数{u,v}下,第1基本形式:I=ds2=E(du2+dv2)=λ2(du2+dv2),E=G=λ2 (λ>0). (1)Laplace算子表达式为

其中f为M上的C2函数; (2)Gauss曲率为

点击查看答案
第10题
R3中k≠0,τ≠0的C4连通曲线x(s)为球面曲线等价于证明:具有常曲率k≠0的挠曲线x(s)为Bertrand曲线(s

证明:具有常曲率k≠0的挠曲线x(s)为Bertrand曲线(s为弧长),且x(s)的侣线

是x(s)的曲率中心的轨迹;并且

的曲率

,挠率

点击查看答案
第11题
求平面上相对曲率kr(s)为常数的连通曲线x(s),其中s为其弧长.

求平面上相对曲率kr(s)为常数的连通曲线x(s),其中s为其弧长.

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改