首页 > 数学与应用数学> 复变函数
题目内容 (请给出正确答案)
[主观题]

设{fn}是拓扑空间X上的非负实函数的序列,证明:

设{fn}是拓扑空间X上的非负实函数的序列,证明:

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设{fn}是拓扑空间X上的非负实函数的序列,证明:”相关的问题
第1题
设X是连通的拓扑空间,C*(X)是X上连续复函数之集,是C*(X)中的一个等度连续函数之集.若对某个x0∈X,复数集{f(x

设X是连通的拓扑空间,C*(X)是X上连续复函数之集,是C*(X)中的一个等度连续函数之集.若对某个x0∈X,复数集{f(x0):f∈}有界,证明对每个x∈X,{f(x):f∈}都是有界的.

点击查看答案
第2题
试证明: 设f(x),g(x)是[0,∞)上非负递增函数,φ(x),ψ(x)是[0,∞)上非负可测函数,则对a<b,有 .

试证明:

设f(x),g(x)是[0,∞)上非负递增函数,φ(x),ψ(x)是[0,∞)上非负可测函数,则对a<b,有

点击查看答案
第3题
设S为非空集合,l2(S)为所有S上的纯量函数x满足: (i){s∈S:x(s)≠0)为可数集且 (ii) 若x,y∈l2(S),令 (34

设S为非空集合,l2(S)为所有S上的纯量函数x满足:

(i){s∈S:x(s)≠0)为可数集且

(ii)

若x,y∈l2(S),令

(34)

求证:l2(S)为Hilbert空间。

点击查看答案
第4题
设f(x),g(x)为任意两个不含非负整根的代数多项式,试证函数 必满足微分方程式 [阿倍尔]

设f(x),g(x)为任意两个不含非负整根的代数多项式,试证函数

必满足微分方程式

[阿倍尔]

点击查看答案
第5题
设H为Hilbert空间,F1,F2,…为H的闭子空间且对于n≠m有Fn⊥Fm。设 求证:任取x∈F,对n=1,2,…,存在唯一的xn∈Fn,

设H为Hilbert空间,F1,F2,…为H的闭子空间且对于n≠m有Fn⊥Fm。设

求证:任取x∈F,对n=1,2,…,存在唯一的xn∈Fn,使得

点击查看答案
第6题
设X是完备距离空间,是X上连续复值函数的集合。证明或者(i)存在 X的稠密子集D使得 或者(ii)存在X中非空

设X是完备距离空间,是X上连续复值函数的集合。证明或者(i)存在

X的稠密子集D使得

或者(ii)存在X中非空开球U使得

点击查看答案
第7题
(X,)是可测空间,μ是(X,)上的有限实测度,A∈.若,EA,有μ(E)≥0,则称A为正集.若,EA,有μ(E)≤0,则称A为负集.证明下

(X,)是可测空间,μ是(X,)上的有限实测度,A∈.若,EA,有μ(E)≥0,则称A为正集.若,EA,有μ(E)≤0,则称A为负集.证明下述的Hahn分解定理:

存在正集A+和负集A-使,A+∪A-=X,且对,有

μ+(E)=μ(A+∩E),μ-(E)=-μ(A-∩E).

这里X的分解(A+,A-)称为μ的Hahn分解.

点击查看答案
第8题
试问对于定义在[0,1]×[0,1]上的非负函数f(x,y),是否均存在g:[0,1]→[0,∞),使得 f(x,y)≤g(x).g(y) (x,y∈[0,1

试问对于定义在[0,1]×[0,1]上的非负函数f(x,y),是否均存在g:[0,1]→[0,∞),使得

f(x,y)≤g(x).g(y) (x,y∈[0,1])?

点击查看答案
第9题
试证明: 设定义在R1上的函数列{fn(x)}满足(λn>0,n∈N) (En={x∈R1:|fn(x)|/λn>1}), 则存在且m(Z)=0,使得

试证明:

设定义在R1上的函数列{fn(x)}满足(λn>0,n∈N)

(En={x∈R1:|fn(x)|/λn>1}),

则存在且m(Z)=0,使得(x∈R1\Z).

点击查看答案
第10题
设ρ=ρ(θ)为非负函数,ρ(0)=1,且对任-θ>0,曲线ρ=ρ(θ)在区间[0,θ]上所对应的一段弧长等于该区间所对应的圆扇形

设ρ=ρ(θ)为非负函数,ρ(0)=1,且对任-θ>0,曲线ρ=ρ(θ)在区间[0,θ]上所对应的一段弧长等于该区间所对应的圆扇形面积的两倍,试问,ρ=ρ(θ)是什么曲线的方程?

点击查看答案
第11题
设f(x)在R1上非负可积,且有 , 试求之值.

设f(x)在R1上非负可积,且有

试求之值.

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改